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We formulate and solve a problem related to the efficient assignment of DSN
antennas to astronomical objects. The solution involves the well-developed theory

of network flow.

l. Introduction

At any given time, the DSN may be required to ob-
serve simultaneously a large number of astronomical
objects (spacecraft, planets, stars, comets, etc.). In gen-
eral each object is not “visible” to each DSN site, and
in addition it may be necessary to observe certain objects
from more than one site, for example for interferometry
experiments or for accurate tracking of accelerating space-
craft. It is the object of this article to give an efficient
algorithm for assigning DSN antennas to astronomical
objects under these circumstances. The method we shall
‘give is derived from the theory of network flows (Ref. 1).
Although we shall be concerned in this paper only with
the static problem of DSN scheduling, in a future paper
we will show how network flow theory can be used to
solve dynamic scheduling problems, ie., to take into
account the fact that the demands on the network are
time-varying.

Here is our general formulation of the static problem.

We denote the antenna sites by x,, x,, * - * , x,,, and suppose
that the i-th site contains h; antennas. We suppose there
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are m astronomical objects to be observed, and we de-
note by A; the subset of the antenna sites from which
the j-th object is visible, We further suppose that the
j-th object must be observed from k; different sites. A
solution to the assignment problem is a collection of sub-
sets of the antenna sites, say B,, By, -, B,, (B; represents
the sites from which the j-th object is to be observed) with
the following property: B; contains k; elements, and no
x; appears in more than h; of the B;s. In the next section
we shall give a necessary and sufficient condition for the
assignment problem to have a solution, and give an eff-
cient algorithm for finding a solution, if it exists.

I1. Solution to the Problem

Let X = {x,,%;, - -+ ,x,} be a finite set, and let

Ay, A, - -, A, be subsets of X; let nonnegative integers
h1, h2, o ,hn; kl, k2, o ,km be given-
ProBLEM A: Under what circumstances is it possible to
find subsets B; CA; j=12, - ,m, with |B;|=k;,
and such that no x; appears in more than h; of the sub-
sets B;?
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Let us observe first of all that there are many condi-
tions which clearly must be satisfied in order for the
problem to possess a solution. Thus suppose a solution
(B;) exists, let ] be any subset of {1,2, - - - ,m} and
denote by B, the multiset union U B;. Furthermore de-
fine h; (J) by: Ted

hi(J) = min (h;, = ¢ij)

jed

Clearly x; could occur no more than h;(J) times in the
multiset B,. Hence it follows that

S ()= 3k (1)

i= jed

for all subsets J. Condition (1), then, is a necessary con-
dition for the existence of a solution to our problem.
It is a remarkable fact, however, that taken together
these 2" conditions are also sufficient:

Tueorem 1. If Condition (1) is satisfied for all subsets
J {12 - ,m}, Problem A can be solved.

Proor. This theorem is actually a special case of a known
theorem on supply-demand networks. Rather than state
the general theorem, however, we shall only describe the
supply-demand network which applies to our particular
problem.

The appropriate directed network has n + m nodes;
they are labeled x,,x., - * * ,%,, A, Ay, * ©  , Ap. There
is a directed edge from x; to A; if and only if ¢;; =1,
i.e., if x;€A;. Each of these edges is assigned a capacity
of 1. The nodes x; are designated supply nodes; the sup-
ply at x; is h;. The nodes A; are designated demand
nodes; the demand at A; is k;. A flow in this network is
an integral-valued function f;; which satisfies f;; = cy;.

One thinks of f;; as the amount of some quantity supplied
to the demand node A; from the supply node x;. The flow
is said to be feasible if the demands are met and the sup-
plies are not exceeded, i.e., if

S fi=k; i=L2 - ,m
i=1
Sfi=hy i=12 - --,n
=1

Notice that such a feasible flow yields a solution to Prob-
lem A; merely take

B;j= U {xi:fi; =1}
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Conversely a solution to Problem A yields a feasible
flow; define

fij =1 if xieB,-
=0 lf xi»e/Bj

Now according to a theorem of Gale (see Ref. 1, Chap-
ter 2: Theorem 1.1 and Corollary 1.2) a feasible flow
exists if, corresponding to every subset of demand nodes,
there is a flow that satisfies the aggregate demand of the
subset without exceeding the supply limitations at each

source. This result is clearly equivalent to Theorem 1.
Q.E.D.

While Theorem 1 is perhaps esthetically satisfying, it
is clearly inefficient to check all 2" conditions (1) in
order to discover if Problem A has a solution. Even if one
could check the conditions it is not clear how one could
then actually construct a solution to the problem. A better
way is to apply the “labeling algorithm” of Ford and
Fulkerson (Ref. 1, Chapter 1) to the extended network
corresponding to Problem A. This algorithm will quickly
either produce a solution to Problem A, or a subset J
such that Condition (1) is violated.

The extended network is obtained from the network
described in the proof of Theorem 1 by adjoining two
additional nodes: “s” (the source) and “t” (the sink). There
are edges from s to each x;; the capacity of the edge (s, x;)
is h;. There are also edges from each A; to t; the capacity
of (Aj, t) is k;. In this extended network a flow is a function
f(a, b) on directed edges (a, b) such that f (a,b) =c (a, b),
the capacity of the edge (a, b), and such that the net flow
at each node other than s and ¢ is 0; i.e.,

Sf(a,b) =3 f(b,a) for all a =~s,t
v b

The value of the flow is
v = Ebf(S,b) = ;f(b,t)

The object of the labeling algorithm is to find a flow of
maximum possible value. It turns out (see Ref. 1, Chap-
ter 2) that a maximal flow in this extended network, when
restricted to the original network, will be a feasible flow
if a feasible flow exists, and in any case will be a flow
which meets as many as possible of the demands without
exceeding the supplies. If no feasible flow exists, the nodes
A; which are unlabeled at the termination of the algo-
rithm will be a subset violating Condition (1). Here is
the algorithm: initially the flow is identically zero.
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Labeling Algorithm
(1) Give the sink s the label [¢].

(2) (Scan a). Select any labeled, unscanned node a, with
label [c=]. Give every unlabeled b, such that
f(a,b) < c(a,b), the label [a+]; give every un-
labeled b, such that f(b,a) > 0, the label [a—]; a

is now “scanned.”

(3) Repeat step 2 until either the sink ¢ is labeled [go
to 4], or until no further labels can be assigned
and t is unlabeled [go to 6].

(4) Set b =1.

(5) If b is labeled [a+], increase f(a, b) by 1; if b is
labeled [a—], decrease f(b,a) by 1. If a = s, erase
all labels and go to 1; otherwise set b = a and re-
peat step 5.

(6) Either all demands h; are satisfied and Problem A
is solved, or the set of unlabeled A;s have an aggre-
gate demand in excess of the total supply, and the
problem is unfeasible.

The labeling algorithm is quite efficient: notice that since
this value of the flow is increased by 1 each time step 5
is executed, and that during the labeling process each
edge needs to be examined at most twice, the total work
involved is at most

m

2.3 k]- * > ¢ = 2mPn kyax if kuax = max(k;)
j i,

=1

We conclude with an example which illustrates these
techniques. Let n = m = 4, A, = {x;,%,, %3}, As = {21, %},
A = {x5, %3}, As = {x, x5, %5); b =2, h, =2, hy =3,
h,=1k =1, k, =2, k; =2, k, = 3. The corresponding
supply-demand network is

DEMANDS

m (2) (2) 3
Al A Ay Ay
X X2 *3 X4
() (2) (3) M
SUPPLIES

(EDGE CAPACITIES ALL 1)
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and the extended network is

We now apply the labeling algorithm to the extended
network. For the purposes of this example, we will always
scan a labeled A; if the sink ¢ can be labeled from A;,
ie., if f(A;,t) <k;. Otherwise our scanning priority will
be (%1, ., x5, X4, Ay, Az, A, Ay). The problem is solved in
9 passes through the algorithm, which we list below:

Order in which nodes

Pass number
are scanned

s, %, ALt

S, %1, Ay, t

S, %X, As, t

S, %Xy, Xy, Ay, t

S, X, X3, Ap, t

S, X3, X, Xy, Ao, T

S, Ko, X3, Ap, X0, Ay, B
S, X, A, t

S, X3, Ap, X5

© 00 -1 O U b W o=

Notice that pass 7 involves backtracking, viz., f (., As)
is decreased. Immediately prior to the execution of pass 7,
the network looks like this (omitting the nodes s and #):




(An edge (x;, A;) with f(x;, A;) = 1 is indicated by a short
dash parallel to that edge.) After the labels have been
added, and the sink ¢ has been reached via A,, the net-
work looks like this:

(We have omitted the = signs on the labels, since labels
on the x; are always either [s—] or [A;+] and those on
the A; are always [x;—].) The execution of step 5 now
increases f (A,,y) by 1, increases f (x;, As) by 1, decreases
f(xi, A;) by 1, increases f(x,,A,) by 1, and increases

f (s, x,) by 1. After this the algorithm runs smoothly, and
ends in the following configuration:

*4
() (2) @) m

No further labels can be assigned, since all labeled nodes
are also scanned. Thus the illustrated flow is maximal, but
the demand at A, is unsatisied. The unlabeled A;s
{A., As, A,) have an aggregate demand of 7, whereas the
total supply into {A,,As;, A} is 2+1+2+1=86, and
so the problem is palpably unfeasible. Notice that if
k; = 2 instead of 3 the algorithm would have terminated
with all demands being met.
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